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Statistical Limitations in Relation
to Sample Size
by Charles E. Land*

The statistical difficulties of estimating cancer risks from low doses of a carcinogen are
illustrated by examples from radiation carcinogenesis. Although more is known about
dose-response relationships for ionizing radiation than for any other environmental carcinogen,
estimates of cancer risk from low radiation doses have been extremely controversial;
disagreements by factors of 100 or more are not uncommon. Direct estimation, based on data
from populations exposed to low doses, is usually impracticable because of sample size
requirements. Curve-fitting analyses, by which higher dose data determine lower dose risk
estimates, require simple dose-response models if the estimates are to be statistically stable.
The current level of knowledge about biological mechanisms of carcinogenesis does not usually
permit the confident assumption of a simple model, however; thus frequently the choice is
between unstable risk estimates obtained using general models and statistically stable
estimates whose stability depends on arbitrary model assumptions.

Introduction
The purpose of this paper is to illustrate some of

the statistical difficulties of estimating cancer risks
from low doses of a carcinogen, that is, from dose
levels producing excess risks that are small rela-
tive to normal risk. The illustration is by examples
from radiation carcinogenesis. More is known about
dose-response relationships for ionizing radiation
than for any other environmental carcinogen, and
models commonly used in curve fitting have widely
accepted radiobiological interpretations. Neverthe-
less, estimates of cancer risk from low doses of
ionizing radiation tend to be extremely controver-
sial; disagreements by factors of 100 or more are
common.

Direct Estimation: Hypothesis
Testing and Point Estimation

Pochin (1) has discussed the difficulties of esti-
mating the increased health risk to populations in
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areas of unusually high levels of background radia-
tion. These difficulties follow from the necessity of
estimating excess risk as the difference between
the observed risk in a population exposed to
higher-than-usual radiation levels and that in a
population exposed to usual levels. In general, the
difference is much smaller than the risks in the
two populations; thus, changes in the dose differ-
ence between the two populations can double or
triple the difference in risk between them without
having a noticeable effect on the overall risk in the
more heavily exposed population.

Example 1
The evidence for a linear dose-response relation-

ship for female breast cancer induced by exposure
to sparsely ionizing radiation, like x-rays or -y-rays,
is strong (2). The 1972 BEIR report estimate of 6
excess cases per million women exposed per year
of observation for risk, following a minimal latent
period of 10 years after exposure, for each rad to
breast tissue (3) still seems appropriate for women
exposed after the age of 20, although not for women
exposed at younger ages (2). Consider an idealized
experiment in which half of a sample of N women
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receive a single mammographic examination result-
ing in 1 rad average tissue dose to both breasts.
Suppose the exposed and nonexposed women are
otherwise comparable and suppose, for simplicity,
that all were 35 years old at the time of exposure,
and that followup information with respect to breast
cancer incidence is available for 20 years following
exposure for each woman. Ignoring the first 10
years, we might expect to see 60 excess cancers
per million exposed women, in addition to the 19100
breast cancers normally seen per million U.S. women
of that age in a 10-year period (4).
The numbers of breast cancers observed in the

exposed and nonexposed women can be assumed
to be independent Poisson random variables with
means equal to N/2 times 19160 per million for the
exposed and times 19100 per million for the non-
exposed. The estimated yearly excess risk due to
radiation, obtained as the difference between the
observed rates in the two populations, has mean D
= 6 x 10' and standard deviation S = [(19160 +
19100) x 10/(N/2)]½110 = 0.02766/N. For simplici-
ty, S will be assumed known, but because we are
considering only very large values ofN this is not
misleading; the usual estimate of S itself has stan-
dard deviation inversely proportional to N. For N
greater than 10,000, the estimate D has approxi-
mately a normal distribution. Finally, we ignore
the small difference between the above value for S
and that corresponding to the null hypothesis of no
excess risk, S = 0.02764N½. Accordingly, the cal-
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culations given below are based on normal approx-
imations to the distributions of the estimate D,
with mean 6 x 10r and standard deviation S, and
the test statistic T = D/S, with mean D/S =
0.000217N½ and unit standard deviation.
Under these assumptions we can calculate the

approximate statistical power of the level 0.05 test
of the hypothesis of no radiation effect on breast
cancer risk against the alternative that risk in-
creases with increasing dose, and the probability
of a negative estimate of risk, both shown as func-
tions ofN in the left-hand panel of Figure 1. Power
is low for N less than 100 million (it is greater than
50% only for N greater than 60 million), and the
chance of a negative estimate of risk is high when
power is low. A negative estimate should not be
interpreted as evidence that no radiation effect
exists, but such an interpretation is often made,
nevertheless.
Even when power is low, the chance of obtain-

ing an estimate that is significantly greater than
zero is at least 5%. The minimum value of a statis-
tically significant estimate is graphed in the right-
hand panel of Figure 1, and the curve above it is
the average value to be expected given statistical
significance. For sample sizes corresponding to low
power, statistically significant estimates are nec-
essarily too high: forN = 1 million, power is only a
little above 5%, the probability of a negative esti-
mate is nearly 50%, and the average statistically
significant estimate is about 55 per million per
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FIGURE 1. Example: Hypothetical 20-year follow-up study of breast cancer incidence among N women, half of them exposed and
half not exposed at age 35 to a breast-tissue dose of 1 rad. Assumed excess risk among the exposed is six breast cancers per
million women per year after a 10-year minimum latency period. Statistical power, the probability of a negative risk estimate,
and the minimum and average risk estimates given statistical significance at level 0.05 are plotted as functions of sample size N.
Adapted from Land (11).
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year, or 9 times the true excess. For N = 10
million, power is 17%, the chance of a negative
estimate is 25%, and the average significant esti-
mate is 3.2 times the true excess, while for N =

100 million power is near 1, negative estimates are

unlikely, and statistical significance imposes no ap-
preciable bias.

If all risk estimates received equal attention,
and if studies of large populations exposed to low
doses of carcinogens were easy to do, the situation
illustrated in the right-hand panel of Figure 1 would
present no problem, at least in the long run. Un-
fortunately, estimates of an effect often are con-
sidered uninteresting if unaccompanied by evidence
that the effect in fact exists, and it is a common-
place among scientists that "positive" studies, those
in which the null hypothesis of no exposure effect
is rejected, are more likely to be reported and
published than "negative," and therefore inconclu-
sive, studies. Large studies involve great effort
and expense and for that reason are unlikely to go
unreported, but many possible effects tend to be
investigated using the same body of data, and it is
the statistically significant estimates that receive
the most attention. A case in point is the various
analyses of the mortality data on workers at the
Hanford Plutonium Works, collected by Dr. Mancuso
and analyzed first by Stewart and and Kneale (5)
and, later, by others (6-9). It seems fair to say that
there has been more attention paid to the two
cancers for which everyone has found a statisti-
cally significant association with dose-pancreatic
cancer and multiple myeloma-than to other can-
cers, including leukemia, for which no association
was found. The point estimates for the two statis-
tically significant sites were very high, even though
these cancers, unlike leukemia, are not among those
most frequently associated with radiation exposure.
Confidence Intervals. The curves presented in

Figure 1, other than the power curve, highlight a
common fallacy in the use of statistical methods
which can be summed up as a tendency to use only
part of the information available from an analysis,

either from a desire to make a point or confirm a
bias, or from a kind of impatience or mental lazi-
ness which leads us to reduce information to a
single number. In other words, reporting (or notic-
ing) only point estimates and whether or not the
estimates are significantly greater than zero can
create an illusion of precision where no precision
exists. A strategy based on confidence interval
estimation is less likely to be misleading but, per-
haps because a confidence interval emphasizes sta-
tistical uncertainty while a single number suggests
precision, this strategy is too seldom employed.

In the example of Figure 1 the event of reject-
ing the null hypothesis corresponds to the event
that a right-infinite, one-sided, level 0.95 confidence
interval for D does not contain zero. The probabil-
ity of this event, therefore, is given by the power
function shown in Figure 1. The probability that
the true excess risk will be excluded from the
interval is 0.05, regardless of sample size, and the
probability that any given larger value is not con-
tained in the interval is a decreasing function of
sample size, with an upper limit of 0.05 (Table 1).
Exclusion probabilities for positive values smaller
than D follow the pattern of the power function,
increasing with increasing sample size. In the ex-
ample, one-sided, left-infinite confidence intervals
for D are symmetric with right-infinite intervals in
the sense that the probability of exclusion of a
value D + E from a left-infinite interval is the
same as that for the value D - E from a right-
infinite interval of the same confidence level. As
can be seen from Table 1, the confidence interval
approach is less subject to the problems highlighted
in the right-hand panel of Figure 1. For example,
for a sample of 10 million women, there is a 17%
chance that a statistically significant point estimate
of risk will be obtained, and if this happens the
estimate can be expected to be 3.2 times as large
as the true risk. The probability that the true
value will be excluded from the 95% right-infinite
confidence interval is only 5%, however, and the
chances of excluding all values less than twice the

Table 1. Example 1: Probability of excluding certain multiples of the true parameter value from one-sided level 0.95 confidence
intervals for various sample sizes.

Right-infinite orientation Left-infinite orientation

Multiple 1 x 106 10 x 106 100 x 106 1 x 106 10 x 106 100 x 106
0 0.08 0.17 0.70 0.03 0.01 0.00007
1/2 0.06 0.10 0.29 0.04 0.02 0.003
1/4 0.07 0.13 0.49 0.035 0.015 0.0005
1 0.05 0.05 0.05 0.05 0.05 0.05
2 0.03 0.01 0.00007 0.08 0.17 0.70
4 0.01 0.0001 0.000000 0.10 0.66 0.999
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true value is only 1%. These probal
spond to conditional probabilities, giv
significance, of 0.29 and 0.06, respE
probability of obtaining a negative p
of risk is 25%, but the chance that estir
than half the true risk will be excl
one-sided, left-infinite confidence intE
0.95 is only 2.3%, and the conditional ]
this, given a negative point estimate,
Sample Size as a Function ofDose
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tions exposed to high doses as opposed to low
doses. Because the sample size requirements for
direct estimation of low-dose risk are so enormous,
this is true anyway, but in the absence of knowl-
edge about the shape of the dose-response model
there must always be uncertainty about low-dose
risk estimates obtained by extrapolation from high-
dose data. Even in the case of radiation carcino-
genesis, for which radiobiological theory suggests
dose-response curves limited, at least for sparsely
ionizing radiation of no more than 200 rads or so,
to linear-quadratic forms with nonnegative coef-
ficients for dose and the square of dose, differences
in the choice of dose-response model can make
large differences with respect to estimated risks
from low-dose exposures.

Example 2
:n the exam- The leukemia incidence data from the life-span
tely over the study sample of survivors of the Nagasaki A-bomb
er words, if for 1950-1971 (10) constitute the most useful exist-
estimate the ing information on dose-response relationships for
inly 10 thou- leukemia induced by sparsely ionizing radiation.
effect of 100 These data yield very different estimates of excess

risk at low doses when fitted to a general linear-
ly other sim- quadratic dose-response model or to pure linear or
sk can be in- pure quadratic models, yet the fitted curves do not
wn to hold in differ markedly in their closeness of fit to the data.
nore efficient That is, the chi-square values for lack of fit do not
lying popula- indicate that any one of these models fits the data

better than any of the others. This lack of discrim-
ination among competing models is ascribable to
lack of statistical power at low doses, as illustrated
in the following discussion.
Table 2 gives average radiation doses to bone

marrow, person-years at risk for grouped data cov-
ering the period 1950-1971 and parameter estimates
from regression analyses of age-adjusted rates (11).
These analyses assumed linear-quadratic, linear and
pure quadratic dose-response models. In the pres-
ent analysis, we assume each of these models, and
for each, the estimated parameter values are as-
sumed to be true. For each assumed dose-response
function, we consider the statistical properties of
curve-fitting analyses using different dose-response
models. In particular, statistical power is calcu-
lated for level 0.05 hypothesis tests of the coefficients
of dose and dose-squared, against positive alterna-
tives. These calculations are based on normal ap-

1oo 1000 proximations to the distributions of the parameter
estimates, assuming the observed numbers of leu-

1. Power as a kemias in each dose group to have the covariance
times°aveeraagea structure of independent Poisson variates. The dose

riod) for increas- distribution in Table 2 is assumed, but the person-
years at risk are uniformly multiplied by factors
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Table 2. Example 2: Assumed person-years at risk, dose values, and dose-response functions for power calculations in
curve-fitting example.

Risk/year

Dose d, rad PY at risk Linear-quadratic model Linear model Pure quadratic model

0 214,222 0.0000333 + 0.000001d + 0.00000001d2 0.00029 + 0.0000025d 0.000035 + 0.000000016d2
2.15 128,288
11.8 71,676
38.9 25,643
79.0 27,355
132 14,714
186 5,415
286 6,981

between 0.1 and 10 in order to show the depen-
dence of power on sample size. Dependence on
average dose level is illustrated by parallel calcula-
tions in which all dose values are assumed to be
reduced by one tenth. Table 3 summarizes the
findings for analyses assuming the linear-quadratic
model.
The linear-quadratic model analyses indicate a

strong dependence of power on the true parameter
value. The power function for tests of the linear
coefficient of dose is largest when the linear model
is assumed because the assumed linear coefficient
is largest according to this model, and it is least
when the pure quadratic model, with zero linear
coefficient, is assumed. When the linear-quadratic
model is assumed, the power for tests of the linear
coefficient is high only after the numbers of person-
years have been increased by a factor of nearly 10,

which explains why analyses of the original data
did not discriminate well between the linear-
quadratic and pure quadratic models. Similarly,
power is low for tests of the dose-squared coefficient
unless the assumed sample size is increased, ex-
plaining the lack of discrimination between the
linear-quadratic and linear models. The values for
the reduced dose levels illustrate the formidable
sample size requirements for complex curve-fitting
analyses of low-dose data.
Power calculations for the linear coefficient of

dose, assuming a linear model analysis, are shown
in Table 4, and those for the quadratic coefficient
of dose, assuming a pure quadratic model analysis,
are shown in Table 5. An important difference
between these calculations and those in Table 3 is
that the linear-quadratic model is a general one,
including the linear and pure quadratic models as

Table 3. Power calculations for linear-quadratic model analyses of Example 2, assuming dose values, person-years at risk, and
dose-response functions shown in Table 2. Values correspond to multiples of the person-year array in Table 2, and to the given

dose array and the array divided by 10.

Dose Dose/10

Lin-quad Linear Pure quad Lin-quad Linear Pure quad

Power for the linear coefficient of dose
Coeff. x 1,000,000 1 2.5 0 1 2.5 0
PY multiplier
(power of 10)

-1 0.089 0.171 0.050 0.057 0.066 0.050
-0.5 0.132 0.342 0.050 0.062 0.081 0.050

0 0.239 0.710 0.050 0.073 0.114 0.050
0.5 0.508 0.988 0.050 0.096 0.194 0.050

1 0.906 1.000 0.050 0.149 0.400 0.050

Power for the quadratic coefficient of dose
Coeff. x 1,000,000 0.01 0 0.016 0.01 0 0.016
PY multiplier
(power of 10)

-1 0.118 0.050 0.118 0.051 0.050 0.052
-0.5 0.205 0.050 0.367 0.052 0.050 0.054

0 0.426 0.050 0.751 0.054 0.050 0.058
0.5 0.828 0.050 0.994 0.058 0.050 0.065

1 0.998 1.050 1.000 0.065 0.050 0.079

December 1981 19



Table 4. Power calculations for linear model analyses of Example 2, assuming dose values, person-years at risk, and
dose-response functions shown in Table 2. Values correspond to multiples of the person-year array in Table 2, and to the given

dose array and the array divided by 10.

Dose Dose/10

Lin-quad Linear Pure quad Lin-quad Linear Pure quad

Coeff. x 1,000,000 2.34 2.5 2.14 1.13 2.5 0.21
PY multiplier
(power of 10)

-1 0.336 0.384 0.296 0.069 0.091 0.054
-0.5 0.701 0.775 0.629 0.087 0.137 0.057

0 0.987 0.996 0.969 0.127 0.252 0.062
0.5 1.000 1.000 1.000 0.226 0.537 0.073

1 1.000 1.000 1.000 0.477 0.926 0.096

Table 5. Power calculations for pure-quadratic model analyses of Example 2, assuming dose values, person-years at risk, and
dose-response functions shown in Table 2. Values correspond to multiples of the person-year array in Table 2, and to the given

dose array and the array divided by 10.

Dose Dose/10

Lin-quad Linear Pure quad Lin-quad Linear Pure quad

Coeff. x 1,000,000 0.0175 0.0187 0.016 0.0847 0.187 0.016
PY multiplier
(power of 10)

-1 0.426 0.497 0.372 0.081 0.116 0.056
-0.5 0.829 0.897 0.367 0.114 0.200 0.061

0 0.999 1.000 0.994 0.194 0.414 0.071
0.5 1.000 1.000 1.000 0.399 0.814 0.092

1 1.000 1.000 1.000 0.796 0.998 0.139

special cases. Thus no bias is introduced by doing a
linear-quadratic model analysis of data when the
true dose-response relationship is linear or pure
quadratic, although, as can be seen from a compar-
ison of the tables, there will be a loss of power
from using an unnecessarily general model. Using
a linear model to analyze data corresponding to a
nonlinear dose response does introduce bias, how-
ever. In such a case, the linear model analysis
estimates the average excess risk over the range
of doses represented, but unlike the linear coefficient
in a linear-quadratic model analysis (assuming the
true dose response is no more complicated), this
value cannot be interpreted as the excess risk per
rad at low dose levels. Thus the value to be esti-
mated by a linear model analysis depends not only
on the true model but also on the dose distribution
of the data; for example, the linear-quadratic dose
response with linear coefficient equal to 1 per mil-
lion, and quadratic coefficient equal to 0.01 per
million, corresponds to an average excess per rad
of 2.34 per million over the dose distribution in
Table 2, but only 1.13 per million over the dose
distribution scaled down by a factor of 10. Similar
considerations apply to linear model analyses of
pure quadratic dose-response data, and to pure-
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quadratic model analyses of linear and linear-
quadratic data.

Perhaps the most surprising thing about Tables
4 and 5 is that power, using linear and pure qua-
dratic model analyses, should appear to depend so
strongly on the value of the parameter to be esti-
mated and so little on whether or not the model
assumed in the analysis is the same as that gener-
ating the data. In other words, lack of fit appears
to have little to do with power. The second note-
worthy observation, which has already been made,
is that the protection against bias obtained through
use of a more general model has a cost in reduced
power.

Summary
There are formidable statistical difficulties asso-

ciated with refined estimation of risk from expo-
sure to carcinogens at low dose levels. These
difficulties are unlikely to be overcome by sample
size expansion or by curve fitting, unless it can be
established independently that the dose-response
relationship is a particularly simple one. Research
into the biological mechanisms of carcinogenesis
would appear to be an essential part of the estima-
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tion process, by which plausible models can be
derived. In the case of radiation carcinogenesis,
radiobiological theory suggests that linear model
analyses, confined to doses under a few hundred
rads to low-LET radiation, may give credible upper
limits of risk at low doses, in the form of confidence
limits. Although more refined solutions may even-
tually appear, the concept of upper limits based on
conservative, simple models is a useful one, ade-
quate for many purposes.
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